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We revisit the problem of one-dimensional Anderson localization, by providing perturbative expression for
Lyapunov exponent of Anderson model with next-nearest-neighbor �nnn� hopping. By comparison with exact
numerical results, we discuss the range of validity of the naive perturbation theory. The stability of band center
anomaly is examined against the introduction of nnn hopping. New anomalies of Kappus-Wegner type emerge
at nonuniversal values of wavelength when hopping to second neighbor is allowed. It is shown that covariances
in the first order of perturbation theory, develop singularities at these resonant energies which enable us to
locate them.
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I. INTRODUCTION

Localization of noninteracting particles in one and quasi-
one-dimensional systems can be formulated using transfer
matrices. It is also mostly accepted that localization proper-
ties in two and three dimensions can be deduced via transfer
matrix method combined with finite-size scaling on quasi-
one-dimensional geometries. Therefore the problem reduces
to calculating growth rates �Lyapunov exponents �LEs�� of
products of random matrices. There are a few cases in which
analytical expression for LEs can be obtained. Most cases
have to be treated numerically. But the limit of arbitrarily
weak disorder is not accessible even numerically because the
convergence slows down extremely. So it would be of crucial
importance to develop a perturbation theory in this limit.
Particularly, existence of delocalized states can be judged
thereby. Perturbative expansions for LEs are provided1 for
some class of random matrices of the form T=A+�B, where
A is nonrandom matrix and �B is small random part. They
require the eigenvalues of A to have different moduli. Many
interesting situations which appear in localization do not ful-
fill this condition.

Using nondegenerate perturbation theory, Thouless2 ob-
tained a weak disorder expansion of LE for one-dimensional
Anderson model. Later numerical results3 showed 9% in-
crease in localization length at the center of band. This dis-
crepancy was resolved by Kappus and Wegner when they
developed a degenerate perturbation theory for the band
center.4 The failure of nondegenerate perturbation theory at
the middle of the band is known as Kappus-Wegner �KW�
anomaly. The anomaly is a manifestation of spatial periodic-
ity of the system. It is known as commensurability effect
between lattice constant and electron wavelength. Descrip-
tion of this effect using phase formalism offers an analogy in
classical dynamics.5,6

Apart from the mathematical subtlety, there are remark-
able physical consequences at this point. Conductance distri-
bution at this anomaly deviates7 from predicted distribution
�log normal� by single-parameter scaling �SPS� theory. The
occurrence of anomaly is accompanied with breakdown of
reflection phase randomization5,8 as well, which also is of
basic assumptions of SPS theory.9 Systematic treatment of
the band center anomaly as well as anomalies at the energies

E=2t cos���� with � rational, is already established.10 Quite
recently a classification of anomalies is given11 for 2�2
transfer matrices according to which the anomaly in the band
center is of second order. Another study is done via calcula-
tion of participation ratio �instead of LE� by means of field
theoretic tools which provides full statistics of wave function
at the band center anomaly.12 This leads the authors to con-
jecture that there is a hidden symmetry responsible for inte-
grability of the problem at this spectral point.

II. MODEL

In more realistic representation of the problem, hopping
to the next-nearest neighbors should be taken into account.
In this paper we want to address the stability of the anoma-
lies, against the introduction of hopping to next neighbors.
We restrict ourselves to hopping to the second neighbor only.
Generalization for other neighbors is straightforward. By do-
ing so, the results will be applicable to probing, recently
proposed13 delocalization transition in low-dimensional sys-
tems with long-range hopping. We consider the one-
dimensional Anderson model

t���n+2 + �n−2� + t��n+1 + �n−1� + �Un�n = E�n �1�

with nnn hopping and weak disordered potential �Un, where
�Un�=0 and �UnUm�=�2�nm. This model also can be viewed
as a system of two coupled chains in the way that is illus-
trated in Fig. 1. It is studied extensively14 as an extension of
one-dimensional Hubbard model, called t-t� Hubbard chain,
and exhibits a rich phase diagram. Pure chain has a disper-
sion relation which is quadratic in cos k

E�k� = 2t cos k + 2t� cos 2k, − � � k � � , �2�

where unit lattice spacing is assumed. We will only consider
positive t� on account of symmetry. Dispersion curves for
two different ratios of � t

t�
�	4 and � t

t�
��4 are plotted in Fig.

1. In the latter case, there are two pairs of wave vectors,
carrying the same energy at the bottom of the band. In other
word, there are two propagating channels for that part of
spectrum. For each case the density of states �DOS� is shown
in the right panel. Additional singularity of DOS inside the
band for � t

t�
��4 is an internal band edge corresponding to
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new channel. As � t
t�

� increases, this singularity moves toward
the bottom of the band and disappears at � t

t�
�=4, after which

there will be single channel at entire band.

III. TRANSFER MATRIX

Propagation along the chain according to Eq. �1� can be
described by using 4�4 transfer matrices

�
�n+2

�n+1

�n

�n−1

	 =�−
t

t�

E − �Un

t�
−

t

t�
− 1

1 0 0 0

0 1 0 0

0 0 1 0
	��n+1

�n

�n−1

�n−2

	 .

�3�

The transmission channels of pure system can be distin-
guished in terms of eigenvalues and corresponding eigenvec-
tors of transfer matrix for �=0. We have four eigenvalues
which appear in pairs 
i ,
i

−1. Each pair corresponds to a
right-going and a left-going plane waves. It should be noted
that each mode is propagating as long as corresponding ei-
genvalue has unit norm and is evanescent otherwise. We will
return to this point and will give the range of energy for each
channel.

In a similar manner, by addition of random potential one
obtains pairs of LEs ��i , i=1,2 for product of transfer ma-
trices. Each LE has a contribution to conductance but regard-
ing the eigenstates, for which k is not a good quantum num-
ber in presence of disorder, the smaller LE gives the
localization length. The transfer matrix in Eq. �3� will be
used for numerical calculation of LEs.

IV. PERTURBATION THEORY

As usual we define the variables Rn=
�n+1

�n
and rewrite Eq.

�1� in terms of them. Also it is appropriate to scale energies
with t� such that t

t�
=h,

Un

t�
→Un, and E

t�
→E. We have

Rn+1Rn +
1

Rn−1Rn−2
+ h
Rn +

1

Rn−1
� = E − �Un. �4�

Following the Ref. 15 we use the ansatz

Rn = aeBn�+Cn�2+¯ �5�

and by inserting in Eq. �4� and collecting terms of same
order in � we obtain recursive equations for a ,Bn ,Cn , . . .. Up
to second order in � we have

a2 +
1

a2 + h
a +
1

a
� = E , �6a�

a2�Bn+1 + Bn� −
1

a2 �Bn−1 + Bn−2� + h
aBn −
1

a
Bn−1� = − Un,

�6b�

a2�Cn+1 + Cn +
1

2
�Bn+1 + Bn�2


+
1

a2�− Cn−1 − Cn−2 +
1

2
�Bn−1 + Bn−2�2


+ h�a
Cn +
1

2
Bn

2� +
1

a

− Cn−1 +

1

2
Bn−1

2 �
 = 0.

�6c�

The LE is given by

��E� = lim
N→


1

N�
n=1

N

log Rn. �7�

Using Eqs. �5� and �7� an expansion for LE can be obtained
as follows:

��E� = log a + ��B� + �2�C� + ¯ . �8�

Angular brackets denote the ensemble average. In order to
calculate the averages we take average of both sides of Eqs.
�6b� and �6c�. Then we get

�B� = 0, �9�

�C� = −

a2 +

1

a2����1� + ��0�� +
h

2

a +

1

a
���0�

2
a2 −
1

a2� + h
a −
1

a
� , �10�

where ���� is the autocovariance function �Bn+�Bn�. Recur-
sive Eq. �6b� is an autoregressive process of third order. Co-
variances ���� can be determined by the following set of
Yule-Walker equations for B process:

��0� = �1��1� + �2��2� + �3��3� +
�2

a4 , �11a�

��1� = �1��0� + �2��1� + �3��2� , �11b�

��2� = �1��1� + �2��0� + �3��1� , �11c�

��3� = �1��2� + �2��1� + �3��0� , �11d�

where �1=−�1+ h
a �, �2= 1

a4 + h
a3 , and �3= 1

a4 .
By solving this set of equations we find

FIG. 1. Dispersion carves �left� and density of states �right� of
pure chain for t=−5, t�=1 �dashed� and t=−1.5, t�=1 �solid�.
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��0� =
�2

a4M
�− 1 + �2 + �1�3 + �3

2� , �12a�

��1� = −
�2

a4M
��1 + �2�3� , �12b�

��2� = −
�2

a4M
�− �2 + �1

2 − �2
2 + �1�3� , �12c�

��3� = −
�2

a4M
��3 + 2�1�2 − �2�3 − �1�2

2 − �1�3
2 + �1

2�3

+ �2
2�3 + �1

3 − �3
3� �12d�

with M = �1+�1−�2+�3��−1+�1+�2+�3��1+�2+�3��1
−�3��. By inserting Eqs. �12a� and �12b� in Eq. �10� and
using Eq. �8� we obtain the LE up to second order �in the
original energy scale�

1

�
= Re��� =

− �2�2

2�2t�
a2 −
1

a2� + t
a −
1

a
�
2 . �13�

Note that inside the band, a is pure phase. This expression
reduces to the well-known result for Anderson model at the
limit t�→0. All that remains is to find roots of Eq. �6a�.
Equation �6a� is in fact the characteristic equation for eigen-
values of transfer matrix of pure system. Inside the energy
band where we have a=eik, it is nothing but the dispersion
relation in Eq. �2�, from which we have

cos k� =
1

4
�− h � �h2 + 4E + 8� . �14�

Depending on the sign of h, one of branches produces the
energy band −2− h2

4 �E1�2+2�h� and the other −2− h2

4
�E2�2−2�h�, for �h��4. We will call them first and second
channel, respectively. For �h�	4, second channel gets closed
and the first one spans the interval 2−2�h��E1�2+2�h�.

V. POLES OF �(�) AND ANOMALIES

Perturbation expansion in Eq. �8�, diverges in different
orders for special energies. As we mentioned, this signals an
anomaly and the order of divergent term is related to the
order of anomaly. As it is shown for Anderson model, first
divergence is showed up in the fourth order at the middle of
the band which corresponds to the principal anomaly �KW
anomaly�. The expansion is finite up to the second order for
the model studied here as well.

The point that has not been noticed is the appearance of
divergences at the level of covariance functions ����. Here
we show that covariance functions ���� possess some poles
on real energy axis, yet the final result in Eq. �13� is finite.
By exact numerical calculation we show that the localization
length enhances at these poles. Depending on h, there are
four situations as follows. Without loss of generality let us
consider positive h hereafter.

h	4. By inserting a small hopping term, t�, in the Hamil-
tonian, results will smoothly deviate from that of ordinary

Anderson model. It will cause an asymmetry in the localiza-
tion length vs. energy about the zero energy. Other surprising
fact is that the anomaly at the band center survives and shifts
from the center �Fig. 2�a��. If we suppose that it would occur
at the same fraction of wavelength to the lattice spacing,
which was seen for Anderson model, we can estimate the
energy by using dispersion relation in Eq. �2� for k= �

2 , which
gives E=−2t�. Now by looking at ���� we can see that there
is one pole at E=−2 �root of the term 1+�1−�2+�3 in M
for first channel� which is the same energy, E=−2t�, in the
original energy scale. This pole indeed corresponds to the
KW anomaly which now appears away from the center. The
anomalous behavior of localization length and deviation
from perturbative result at this point can be seen clearly in
Fig. 2�a�. It is also present in other cases but appears weaker.
The second channel is evanescent in this case.

FIG. 2. �Color online� Localization length obtained from nu-
merical calculation via transfer matrix method �solid� and analytical
perturbation theory �dashed�. White noise disorder with uniform
distribution and zero mean is used. Arrows indicate the anomalies
and their positions are determined from poles of covariance func-
tion ����. Numbers denote the channel in which the poles show up.
�a� t=8, t�=1, �2= 3

4 , inset is a closer view of anomaly, �b� t=1,
t�=0.6, �2= 1

300, inset is a closer view of anomalies, and �c� t=0.3,
t�=1, �2= 1

300, inset: t=0.8, t�=1, �2= 1
1200.
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4�6
9 �h�4. Third factor in denominator, 1+�2+�3��1

−�3�, has other roots which satisfy the cubic equation x3

=3px−2q, where p= 2
3 , q= h

2 , and x= �a+ 1
a �=2 cos k�. Posi-

tive and negative signs correspond to first and second chan-
nels, respectively. In this case which we have q2− p3	0, the
equation has one real root x=−�q+�q2− p3�1/3− �q
−�q2− p3�1/3 which gives a valid energy in second channel
only. In the first channel we have one pole so far �Fig. 2�b��.

h= 4�6
9 . In this case �q2− p3=0�, the cubic equation has

three real roots, one of which has multiplicity 2, x1=
−2q1/3 ,x2=x3=q1/3. x1 is actually the root in previous case
and corresponds to the second channel. The other root gives
rise to a pole of second order in the first channel.

h�
4�6
9 . We have three distinct real roots in this case �q2

− p3�0�, which can be expressed in the standard form, x1
=2�p cos�u /3�, x2=2�p cos�u /3+2� /3�, x3=2�p cos�u /3
+4� /3�, where cos u=−q / �p�p�, 0�u��. Again one of
them is in second channel and other two are in the first chan-
nel �Fig. 2�c��. One of the later poles seems to be absent in
numerical results and needs to be discussed beyond the
second-order perturbation. These cases are summarized in
the Fig. 3.

The wave vector of last three poles is given by

k = arccos
x

2
. �15�

Due to the dependence of x on h, wave vector changes con-
tinuously by varying the ratio of hopping integrals �Fig.
3�b��. Thus the value of wavelength at these anomalies will
not be necessarily rational.

We shall mention two other essential features in Fig. 2. �i�
Apart from in the anomalies, perturbative result deviates sig-
nificantly from numerical result for those energies at which
two channels are open �Figs. 2�b� and 2�c��. Analytical result
based on Eq. �5� presents the perturbation around the solu-
tions with single wave vector while the numerical method
produces a mixture of two solutions. The fact that the
anomalies are obtained correctly by perturbation theory, sup-
ports the above statement.

It is worth mentioning the limit of zero h where the whole
spectrum is degenerate. Covariances in Eq. �12� are diver-
gent, however LE in Eq. �13� has a well-defined limit. We
have nnn hopping �t�� only at this limit and the system trans-
forms to two decoupled chains with nearest-neighbor hop-
ping. So one expects the result of ordinary Anderson model
��A� with doubled lattice constant, i.e., �→2�A. But the fac-
tor is 4 rather than 2. This suggests to use decoupled chains
as a starting point to develop the perturbation theory. �ii� The

sudden change in localization length happens at the internal
band edge and is in coincidence with van-Hove singularity in
DOS of pure system.

VI. CONCLUSION

In conclusion, we show that KW anomaly exists in pres-
ence of nnn hopping, where we have lower symmetry of
Hamiltonian for vanishing disorder �broken particle-hole
symmetry� and occurs at the same wavelength as in the
Anderson model. We also demonstrate that the anomaly
could be identified by certain divergences at first order of
perturbation theory. Three other singularities turn out to exist
which are not attributed to single wavelength and may even
correspond to incommensurate ratio of wavelength to the
lattice spacing which is in striking contrast to the known
anomalies in Anderson model.
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